2013年の始まりに寄せて …… 2
日本特許の全文データベース JPFULL ファイルがリリースされました！………… 4
共通の語尾をもつ医薬品の名称検索…………………………… 10
CAplus 12

ReaxysFile セミナー（実習付き） 11
STN on the Web 活用セミナー（実習付き） 11
AGRICOLA ファイル 18
EMBASE ファイル 18
IMSPATENTS ファイル 19
INPADOCDB/INPAFAMDB ファイル 20
JPFULL ファイル 21
MARPAT ファイル 21
MEDLINE ファイル 21
METADEX ファイル 21
ReaxysFile ファイル 22
USGENE ファイル 22
WPINDEX/WPIDS/WPIX ファイル 23
アラート 23
STN コマンド 23
STN Viewer 23
FIZ AutoDoc 機能強化のお知らせ 24
STN 講習会 24
ホームページの資料掲載のお知らせ 25
STN インターネットセミナー 26
STN 出張講習会 27
ReaxysFile セミナー（実習付き） 28
STN on the Web 活用セミナー（実習付き） 28
2013年の始まりに寄せて

新年あけましておめでとうございます。
昨年もSTNをご利用いただき、誠にありがとうございます。多くの皆様に支えられ、弊協会も無事業務を遂行することができました。まずはスタッフ一同より厚くお礼申し上げます。

2012年もSTNでは多くの強化が実施されましたが、その中から代表的なものについてご紹介いたします。

データベースの追加およびリード

アジア特許情報への関心は年々高まっておりますが、STNでも皆さまの強い要望に応えて中国特許の全文データベースであるCNFULLファイルを3月にリリースいたしました。CNFULLファイルには1985年以降発行の中国公開・登録特許および実用新案の全文が収録されており、そのうち標題と抄録は人手で翻訳されています。数値検索機能も利用できますので、数値限定特許の調査も可能です。

その後10月に日本特許の英語による全文データベースであるJPFULLファイルがリリースされました。日本特許を他国の全文データベースと合わせて英語で検索することができ、英語の方が的確に表現できるような概念の調査に有効にご利用いただけます。JPFULLファイルには更に強化された数値検索機能のバージョン2（後述）を搭載しました。

ReaxysFileファイルにも大きな強化がなされました。8月のリード時に旧GMELINファイルの無機化合物情報およびPCD（Patent Chemistry Database）と呼ばれる英語で書かれたPCT出願、ヨーロッパ特許、米国特許中の物質・反応情報が追加され、より広範な化学物質関連情報を提供するファイルになりました。

7月末にリリースされたPQSciTech（ProQuest Science & Technology）ファイルは、エンジニアリングからライフサイエンス分野に及ぶ広範な科学・技術情報を収録しているデータベースです。このファイルは新規ファイルではなく、STNに搭載されていたCSA（Cambridge Scientific Abstracts）が提供する25のデータベースを統合したもので、広い分野の情報を一つのデータベースにまとめることで、より効率的な検索が可能になりました。収録されている2,700万件以上の文献のうち約560万件は特許由来です。またこのファイルにも数値検索機能のバージョン2を搭載しました。

数値検索機能の強化 - バージョン2のリード

STNが独自に開発したこの機能は、テキスト中の数値と単位を指定して物性を検索することができるという画期的なものです。2011年にPCTFULLファイルに初めて導入され、2012年には検索できる物性を55種類・94単位に拡大したバージョン2がリリースされました。バージョン2では従来は検索できなかった最大値や最小値のみで記述された数値範囲もヒットさせることができます。数値検索機能のバージョン2の詳細については、下記の資料をご参照ください。

なお、この機能は昨年WPIファイルにも追加されました。WPIには詳細な標題や抄録、および各公報のフレームが収録されていますが、その中の数値を種類、単位および記述方法にかかわらず自由に検索できるのはSTNだけです。

アラートの強化

アラートについては、配信方法で二つの大きな強化がありました。一つはマルチファイルアラートの結果を重複を除いた状態で一括して入手できるパッケージアラートに、「毎週」の頻度が追加されたことです。
来は「毎月」のみでしたが、最新情報をいち早く効率よく入手したいというご要望に応えて「毎週」が選択できるようになりました。そしてもう一つは RSS 配信です。すべてのタイプのアラートの回答を RSS 配信で入手することができ、過去の回答を合わせてブラウザ上で簡単に確認することができます。もちろん構造図の表示も可能です。

STN 新プラットフォームの開発

STN は新プラットフォームの開発を 2010 年に発表しましたが、昨年末にはよいよ STN 定額契約のお客様を対象に Version 1 ベータの提供を開始いたしました。このプラットフォームは、情報担当者や知財担当者といった情報の専門家向けのツールとして、従来の STN の持つ重要なコンテンツとコマンドを使った詳細な検索機能を維持しつつ、システム制限といった検索上の不便な点を解消し、調査業務の流れに沿って利用できるサービスを目標に開発されています。日米欧の STN 利用者代表がメンバーとなっている STN Advisory Council から多くのご助言をいただきながら開発を続けておりますが、Version 1 のベータ版をご覧いただいたメンバーの皆さんからは「新プラットフォームとして目指している方向性は間違っていない」という強いご意見を昨年もいただきました。なお新プラットフォームリリース後も少なくとも数年は従来ご利用の STN の各種サービスも併用してご利用いただけるので、必要に応じて両サービスを使い分けていただくことが可能です。

2013 年は新プラットフォームの更なる強化に加え、新規の特許全文データベースのリリースや各種データベースのコンテンツの追加も多く予定されております。我々スタッフも皆様に信頼されるサービスを提供するべく努力を続けてまいります。STN および弊協会のサービスについてご要望等がございましたら何なりとお申し付けください。今年も情報事業部一同の写真を載せました。講習会、セミナー、展示会等々皆様にお会いすることがあるかもと思いますが、是非お気軽にお知らせください。

最後になりましたが、今年も皆様にとって更なる飛躍の一年になることを祈念し、年頭のご挨拶とさせていただきます。本年もどうぞよろしくお願いいたします。

化学情報協会 情報事業部長 上野京子

情戫事業部一同
日本特許の全文データベース

JPFULL ファイルがリリースされました！

このたび、日本特許の全文データベースである JPFULL ファイルが STN に仲間入りしました。STN の他のファイルと連携した検索や、テキスト中の数値の検索など、STN 独自の使い方ができます。ぜひ活用ください。

■ JPFULL ファイル概要

<table>
<thead>
<tr>
<th>製作者</th>
<th>Questel</th>
</tr>
</thead>
<tbody>
<tr>
<td>収録内容</td>
<td>日本特許庁（JPO）が発行した特許および実用新案の英語の全文情報（詳細は下表参照）</td>
</tr>
<tr>
<td>収録分野</td>
<td>全技術分野</td>
</tr>
<tr>
<td>収録内容</td>
<td>書誌情報、抄録、詳細な説明、クレーム、特許分類（IPC, ECLA, ICO）</td>
</tr>
<tr>
<td>レコード構成</td>
<td>出願単位</td>
</tr>
<tr>
<td>収録期間</td>
<td>現在は 2005 年以降に出願された特許を収録。1964 年まで順次追及収録中</td>
</tr>
<tr>
<td>収録件数</td>
<td>1964 年まで収録完了した後、約 1,600 万件（2,200 万公報）になる予定</td>
</tr>
<tr>
<td>更新頻度</td>
<td>毎週</td>
</tr>
<tr>
<td>アラート</td>
<td>毎週（デフォールト）、毎月</td>
</tr>
</tbody>
</table>

■ JPFULL ファイルの特長と利点

特長 1：日本特許を 英語に翻訳 した全文を収録しています。

▶ 日本の特許と他国の特許を、英語で一括検索可能です！
▶ 日本語より英語の方がうまく表現できるタームを検索する時に便利です！

特長 2：STN 独自の『テキスト中の数値検索』機能（55 種類の物性）を搭載しています。

▶ パラメータ特許の検索に有効です！

特長 3：STN の 他のファイルと連携 して使用すれば、さらに様々な調査ができます。

▶ STN は化学物質や法的状況などの調査に適した様々なファイルを搭載しています！

■ 収録対象の主な特許種別

<table>
<thead>
<tr>
<th>特許種別</th>
<th>公報タイプ</th>
</tr>
</thead>
<tbody>
<tr>
<td>JPA</td>
<td>公開・公表特許</td>
</tr>
<tr>
<td>JPA1</td>
<td>再公表特許</td>
</tr>
<tr>
<td>JPB</td>
<td>公告特許</td>
</tr>
<tr>
<td>JPB1</td>
<td>公開前登録特許</td>
</tr>
<tr>
<td>JPB2</td>
<td>登録特許</td>
</tr>
<tr>
<td>IPC</td>
<td>登録特許（旧法）</td>
</tr>
<tr>
<td>JPU</td>
<td>登録実用新案（未審査）</td>
</tr>
<tr>
<td>JPY1</td>
<td>実用新案（審査済）</td>
</tr>
<tr>
<td>JPY2</td>
<td>実用新案（審査済，二次公報）</td>
</tr>
</tbody>
</table>

左表は、収録対象の主な特許種別です。

現在は 2005 年以降に出願された特許を収録しているため、
黄色で示しである特許種別が収録されています。

今後は、毎週の更新ごとに追加データも収録していき、1964 年まで追及する予定です。収録年や特許種別は、バナーや => E A/PK で確認できます。
■ 特長 1：日本特許を英語に翻訳した全文を収録しています。

JPFULL ファイルは、日本特許を英語に翻訳した全文を収録しています。フィールドによって、翻訳の形態が異なります。

■ レコード構成

・JPFULL ファイルのレコード構成は、出願単位です。

公開特許
書誌情報
JP 公開特許
抄録 (AB)
詳細な説明 (DETD)
クレーム (CLM)

登録特許
書誌情報
JP 登録特許
抄録 (AB)
詳細な説明 (DETD)
クレーム (CLM)

1 レコードは出願単位

■ 日本語の翻訳

・標題 (TI) と抄録 (AB)

レコード作成時：機械翻訳された英語の情報が収録され、抄録に「Machine translation」という表記が付与されます。

△約三ヶ月後：人手翻訳された英語の情報と置き換わり、「Original」という表記に変わります。

特許種別 JPA の特許、人手翻訳された標題・抄録は JAPIO 由来です

その他：対応特許由来の英語の情報と置き換わり、「Equivalent」という表記が付与されます。

DOCDB に基づく特許ファミリー情報が、入手可能な場合

■ 詳細な説明 (DETD) とクレーム (CLM)

機械翻訳された英語の情報が収録されます。

■ 主な表示形式

・表示形式の後ろに .M をつけると、レコード中の全公報の情報を表示することができます。.M をつけない場合は、最新の公報のみが表示されます (FAM, LS, TRIAL など一部のフィールドを除く)。

<table>
<thead>
<tr>
<th>表示形式</th>
<th>内 容</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIB*1</td>
<td>書誌情報 (最新公報のみ)</td>
</tr>
<tr>
<td>STD*1</td>
<td>書誌情報 + 特許分類 (最新公報のみ)</td>
</tr>
<tr>
<td>STD.M*1</td>
<td>書誌情報 + 特許分類 (全公報) デフォールトの表示形式</td>
</tr>
<tr>
<td>BRIEF*1</td>
<td>書誌情報、特許分類、抄録、メインクレーム (STD, AB, MCLM) (最新公報のみ)</td>
</tr>
<tr>
<td>ALL*1</td>
<td>書誌情報、特許分類、抄録、詳細な説明、クレーム (全公報の情報のみ)</td>
</tr>
<tr>
<td>MAX*1</td>
<td>書誌情報、特許分類、抄録、詳細な説明、クレーム (全公報の情報のみ)</td>
</tr>
<tr>
<td>TRIAL</td>
<td>入力日に関する情報、標題、フィールドの存在、詳細な説明のパラグラフ数、クレームのパラグラフ数 (最新公報の情報のみ)</td>
</tr>
<tr>
<td>KWIC*2</td>
<td>ヒットタームの前後 20 語 (KeyWord-In-Context)</td>
</tr>
<tr>
<td>LS*3</td>
<td>法的状況</td>
</tr>
<tr>
<td>FAM*3</td>
<td>アクセッション番号、特許ファミリー情報</td>
</tr>
<tr>
<td>RE*3</td>
<td>引用情報</td>
</tr>
</tbody>
</table>

*1 表示形式の前に I を付けると (例：IALL) インデント形式になります
*2 基本索引に含まれるフィールドおよび特許分類のみを使用した検索については無効です
*3 INPADOCDB ファイル由来の情報です

・料金の詳細は、こちらをご覧ください。

www.jaici.or.jp/stn/tariff/plindex.html
特集２：STN 独自の『テキスト中の数値検索』機能（55 種類の物性）を搭載しています。

JP FULL ファイルでは、Version 2 の『テキスト中の数値検索』機能を搭載しています。下記の一覧表にある 55 種類の物理値を、94 の単位で検索することができます。

検索対象は、基本索引（標題、抄録、クレーム、発明の詳細な説明）です。

検索する時は、特定の数値または数値範囲に続いて単位と検索フィールドコードを指定します。単位を省略すると、フィールドごとに決められたデフォルトの単位で検索が実行されます。

⇒ S 数値/単位/検索フィールド（数値を指定して検索）

また、検索フィールドコードを /PHP フィールドで検索すると、すべての数値がヒットします。

⇒ S 検索フィールド/PHP（すべての数値を検索）

検索フィールド一覧

<table>
<thead>
<tr>
<th>検索フィールド</th>
<th>物性名</th>
<th>デフォルト単位</th>
<th>物性名</th>
<th>デフォルト単位</th>
</tr>
</thead>
<tbody>
<tr>
<td>/AOS</td>
<td>物質量</td>
<td>mol</td>
<td>/M</td>
<td>質量</td>
</tr>
<tr>
<td>/BIR</td>
<td>ビットレート</td>
<td>bit/s</td>
<td>/MCH</td>
<td>質量電荷比</td>
</tr>
<tr>
<td>/BIT</td>
<td>保存情報</td>
<td>bit</td>
<td>/MFD</td>
<td>磁束密度</td>
</tr>
<tr>
<td>/CAP</td>
<td>静電容量</td>
<td>F</td>
<td>/MFR</td>
<td>質量流量</td>
</tr>
<tr>
<td>/CDN</td>
<td>電流密度</td>
<td>A/m²</td>
<td>/MM</td>
<td>モル質量、分子量</td>
</tr>
<tr>
<td>/CMOL</td>
<td>モル濃度</td>
<td>mol/L</td>
<td>/MOLS</td>
<td>重量モル濃度</td>
</tr>
<tr>
<td>/CON</td>
<td>コンダクタンス</td>
<td>S</td>
<td>/MV/R</td>
<td>メルトフローレート</td>
</tr>
<tr>
<td>/DB</td>
<td>デシベル</td>
<td>db</td>
<td>/NUC</td>
<td>栄養素含量</td>
</tr>
<tr>
<td>/DEG</td>
<td>角度</td>
<td>degree</td>
<td>/PER</td>
<td>パーセント</td>
</tr>
<tr>
<td>/DEN</td>
<td>密度、質量濃度</td>
<td>kg/m³</td>
<td>/PERA</td>
<td>誘導電流</td>
</tr>
<tr>
<td>/DEQ</td>
<td>溶解度</td>
<td>Sv</td>
<td>/PHV</td>
<td>水素イオン指数</td>
</tr>
<tr>
<td>/DOS</td>
<td>投与量</td>
<td>mg/kg</td>
<td>/POW</td>
<td>電力</td>
</tr>
<tr>
<td>/DV</td>
<td>動的粘度</td>
<td>Pa's</td>
<td>/PRES</td>
<td>圧力</td>
</tr>
<tr>
<td>/ECH</td>
<td>電荷</td>
<td>C</td>
<td>/RAD</td>
<td>放射能</td>
</tr>
<tr>
<td>/ECD</td>
<td>電荷密度</td>
<td>C/m²</td>
<td>/RES</td>
<td>電気抵抗</td>
</tr>
<tr>
<td>/ECO</td>
<td>電気伝導率</td>
<td>S/m</td>
<td>/RSP</td>
<td>固有伝導度</td>
</tr>
<tr>
<td>/ELC</td>
<td>電流</td>
<td>A</td>
<td>/SAR</td>
<td>面積</td>
</tr>
<tr>
<td>/ELF</td>
<td>電場</td>
<td>V/m</td>
<td>/SOL</td>
<td>溶解度</td>
</tr>
</tbody>
</table>
| /ENE | エネルギー | J | /STSC | 表面張力、ばね定数 | J/m² |}

Version 2 では、下記の一覧の黄色で示してある物理値が新たに追加されました。Version 1 との違いや、強化点など詳細は、こちらをご覧ください。

www.jaici.or.jp/stn/stn_doc.html#08
■ 特長 3：STN の 他のファイルと連携 して使用すれば、さらに様々な調査ができます。

STN は様々な分野のファイルを搭載しています。STN の特許ファイル間は、特許番号（PN）や種別つき特許番号（PNK）を抽出し、検索することで、別のファイルで回答を再現することができます。

例）JPFULL ファイルと CAlplus/CA、REGISTRY、WPI ファイル

JPFULL ファイル
・ 数値検索機能
・ 標題の無料表示

特許番号（PN）

CAplus/CA ファイル
・ 化学物質索引
・ 統制語
・ 特許ファミリー情報

REGISTRY ファイル
・ 化学物質情報

WPI ファイル
・ 詳しい索引
・ 特許ファミリー情報

ここからは、他のファイルから JPFULL ファイルを使う時の検索例をご紹介します

■ 検索例：ビタミン D（Vitamin D2（50-14-6）、Vitamin D3（67-97-0））が医薬用途で使われている日本特許を REGISTRY ファイルと CAlplus ファイルで検索し、具体的な IU（国際単位）の記述のある特許を JPFULL ファイルで確認する

=> FILE REGISTRY ← REGISTRY ファイルに入ります
=> S 50-14-6 OR 67-97-0
 L1 2 50-14-6 OR 67-97-0
=> FILE CAlplus ← CAplus ファイルに入ります
=> S L1/THU ← 医薬用途（THU）のロールで限定します
 L2 2320 L1/THU
 （L1（L）THU/RL）
 => S L2 AND JP/PC ← 日本特許に限定します
 L3 382 L2 AND JP/PC

=> FILE JPFULL ← JPFULL ファイルに入ります
=> SET PLU ON; SET ABB ON; SET SPE ON
SET COMMAND COMPLETED
=> SET HIGHLIGHT OFF ← ハイライト機能をオフにします
SET COMMAND COMPLETED
=> TRA L3 PN WITH “JP” ← L3 から JP を含む特許番号を抽出し検索します
 L4 TRANSFER L3 1- PN WITH “JP” ; 468 TERMS
 L5 158 L4
=> SET HIGHLIGHT ON ← ハイライト機能をオンに戻します
SET COMMAND COMPLETED

化学物質の検索を REGISTRY ファイルで、その物質の役割を表す CAS ロールを使った検索を、CAplus ファイルで行います

後で KWIC 表示形式を無料で使うために設定を切り替えています。
KWIC 表示形式は、基本索引に含まれるフィールドおよび特許分類のみを使用した検索については無料です。
TI を指定すると、日本語の情報でも検索できます。
これらの表示形式は、概要を把握したい時に便利です。

標題、発明者名、特許出願人は、日本語で表示できます（検索はできません）
AB

Equivalent

PROBLEM TO BE SOLVED: To provide a method for producing beadlets having a high concentration active ingredient selected from fat-soluble vitamins, carotenoids and polysaturated fatty acids.

SOLUTION: This method for producing crosslinked beadlets containing one or more active ingredients selected from the group of fat-soluble vitamin active substances, carotenoids and polysaturated fatty acids, comprises a process of forming an emulsion containing an active ingredient, an emulsifier and reducing sugar; a process of converting the emulsion into a dry granular form by covering the droplet of the emulsion with a finely dispersed powder; and a process of treating the dry granular form at a temperature in a range of from 90 deg.C to 140 deg.C for a time period of from 30 s to 30 min or from 1 min to 10 min or from 3 min to 7 min.

COPYRIGHT: (C) 2011, JPO&INPITAB

DETD

TECHNICAL FIELD. [0001] As for this invention, production method of bizuretsuto which possesses the active ingredient of the high density which is selected from the fat-soluble vitamin, the carotenoid, and the polysaturated fatty acid. It regards bizuretsuto which is obtained, and the composition which includes those.

SUMMARY OF INVENTION. [0002] Rather than in detail, as for this invention, the fat-soluble vitamin active material, being production method of building a bridge bizuretsuto which includes the active:

CLM

1. The fat-soluble vitamin active material, being production method of building a bridge bizuretsuto which includes the active ingredient of one or more which is selected from the group of the carotenoid, and the polysaturated fatty acid. The active ingredient, the emulsifier, and fructose and the glucose which are selected from the group of gelatin:

3. Density of the active ingredient, is selected from entire density of the range of the 20-50% polysaturated fatty acid as a range of 500,000-1,000,000 IU vitamin A/g bizuretsuto, a range of 50-75% vitamin E, a range, and a triglyceride of the 5-20% carotened of claim 1 statement.

4. Dry granular form has the percentage of water content up to claim 1 method of statement.

10. Vitamin A of entire density of the range of 800,000-1,6 vitamin A/g bizuretsuto, vitamin D of entire density of the 100,000-500,000 IU vitamin D/g bizuretsuto, vitamin E of entire density of the range of the 50-75% and the carotenoid of entire density of the range of the 5-20%, being the building a bridge bizuretsuto which includes with the active ingredient of one or more with:

キーワードと IU（国際単位）がクレームの同一パラグラフ内に存在するレコードがヒットしました。

同一パラグラフ内で限定する時は（S），同一フィールド内で限定する時は（P）を使います。

数値検索フィールドコードを /PHP フィールドで検索すると，目的とする物性の種類で記載された数値表記を含むレコードをまとめて検索できます。

JPFULL ファイルの数値検索機能に関する詳細は，STN 特許情報セミナー「新規データベース - JPFULL ファイル」の章をご参照ください．www.jaici.or.jp/stn/pdf/patent_201211.pdf
共通の語尾をもつ医薬品の名称検索

抗生物質では～mycin、ヒト化モノクローナル抗体では～zumabのように、構造や作用、由来などが類似する医薬品は、名称に共通の語尾をもつ場合があります。このような共通の語尾をもつ検索はREGISTRYファイルでまとめて検索するときは、CN（自然セグメント）フィールドが便利です。

自然セグメントは、化学物質名称をスペースやハイフン、カンマなどで、自然な位置で切断した部分名前です。これを検索するCNフィールドでは、中间一致・後方一致検索が利用できるため、共通の語尾をもつ化学物質を簡単に検索することができます。

REGISTRYファイルの名称検索フィールド

- **フィールド名フィールドコード**
 - 完全名称/CN
 - 自然セグメント/CNS
 - 基本索引/BI（省略可）

- **検索対象**
 - 完全に一致する名称
 - スペースやハイフン、カンマなどで切断された部分名前
 - スペースやハイフン、カンマ、化学的な意味の区切れで切断された部分名前と、それらを結合した部分名前

<table>
<thead>
<tr>
<th>キーワード</th>
<th>検索対象</th>
<th>中間・後方一致検索</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-Bromo-2-benzyloxybenzene</td>
<td>完全名稱/CN</td>
<td>×</td>
</tr>
<tr>
<td>I-Bromo-2-benzyloxybenzene</td>
<td>自然セグメント/CNS</td>
<td>○</td>
</tr>
<tr>
<td>Bromo-2-benzyloxybenzene</td>
<td>化学的意味で切断</td>
<td></td>
</tr>
</tbody>
</table>
ReaxysFile セミナー（実習付き）

ReaxysFile ファイルを利用した化学物質関連情報の検索をご紹介する無料セミナーを開催します！

ReaxysFile ファイルは化学物質同定情報、物性情報、反応情報を収録するデータベースです。2012年8月にリロードが行われ、新たに無機化合物（元GMELINファイル）と特許由来の化合物（実験項を含む）が収録されました。

本セミナーでは、リロード情報を含めたReaxysFileファイルの検索方法についてご紹介します。
1名につき1台のPCと練習問題をご用意しておりますので、実習も行っていただけます。
ぜひこの機会にReaxysFileファイルの検索をマスターしてください！

【日時】
東京：2月20日（水）13:00-17:00
大阪：2月21日（木）13:00-17:00
大阪：2月26日（火）13:00-17:00
大阪：2月27日（水）13:00-17:00

【レベル・対象者】
初級〜中級レベル
「化学物質検索 I - 基礎」をご受講済みの方（必須）

STN on the Web 活用セミナー（実習付き）

STN on the Webの便利な機能をご紹介する無料セミナーを開催します！

STN on the Webは、STNの検索をWeb上で実現するサービスです。STNの検索・表示ができるだけでなく、下記のような便利な機能が多数搭載されています。

★検索補助（Assistants機能）
CPlus/CAのダブルペーシック特許の重複除去を自動的に行ったり、アラートの登録を簡単に行うことができます。

★ハイパーリンク機能
セッション画面の回答中に表示されるハイパーリンクをクリックするだけで、原報の入手や被引用検索、関連情報を入手することができます。

★STN AnaVist、STN Viewerとの連携機能
STN on the Webで検索した結果をSTN AnaVistで解析したり、STN AnaVistで保存した回答をSTN on the Webで呼び出すことが可能です。
また、STN on the Webで検索した特許の全文情報をSTN Viewerで閲覧/評価できます。

本セミナーではこれらの機能についてご紹介します。
1名につき1台のPCをご用意し、実習を通して上記機能をお試しいただけます。

【日時】
東京：3月1日（金）13:30-15:30
大阪：3月8日（金）13:30-15:30
このコーナーでは毎号 CAplus/CA ファイルをご利用いただく際に有益な情報やテクニックをお知らせします。
今回のテーマは、「イレギュラーなレコード」。CAplus/CA ファイルに収録されている、少し変わったレコードについて説明します。

【イレギュラーなレコードの種類】
CAplus/CA ファイルには、下記のようなイレギュラーなレコードが含まれていることをご存じでしたか？それぞれ、「ある特別な理由」によって、同一文献、同一発明に関するレコードが複数存在するケースがあります。

● Erratum : 著者等が以前の論文の誤りを訂正した場合に作成されるレコード
● Correction : CAS 側の事情により修正レコードが作成されるレコード
● 分割レコード : 索引の数が多すぎたために複数レコードに分けて収録されたレコード

【Erratum】
CAplus/CA ファイルのレコードを表示した際に、標題中に「Erratum...」と記載されているレコードがあります。これは、雑誌論文で著者等が以前の論文の誤りを修正した場合に、作成されたレコードです。

右図のレコード例では、「Erratum to document cited in CA156:241859」と記載されていることから、このレコード（CA157:25274）が CA156:241859 の雑誌論文の修正に伴って作成されたレコードであることがわかります。

そして、その修正の内容が抄録 (AB) フィールドに記載され、新しい索引が付与された場合は、erratum という標記とともに示されます。

しかし、抄録や全索引、引用文献等については元レコードである CA156:241859 を表示して確認する必要があります。

【Erratum のレコード例】
AN 2012:845606 CAPLUS Full-text
DN 157:25274
ED Entered STN: 14 Jun 2012
T1 Optical potential obtained from relativistic-mean-field
 theory-based microscopic nucleon-nucleon interaction.
 Applied to cluster radioactive decays [Erratum to document
 cited in CA156:241859]
AU Singh, BirBikram; Bhuyan, M.; Patra, S. K.; Gupta, Raj K.
CS Institute of Physics, Bhubaneswar, 751 005, India
SO Journal of Physics G: Nuclear and Particle Physics (2012),
 39 (6), 069501/1 CODEN: JPSGFED; ISSN: 0954-3899
ST Journal
LA English
CC 70-1 (Nuclear Phenomena)
AB On page 4, Figure 1 was incorrect; the corrected figure is
 given and the rest of the paper is unaffected.
ST erratum optical potential relativistic mean field theory
 cluster; optical potential radioactive decay erratum;
 microscopic nucleon-nucleon interaction cluster radioactive decay
 erratum
IT Nuclear optical potential
 Nucleon-nucleon potential
 Radioactive cluster decay
 (optical potential obtained from
 relativistic-mean-field theory-based microscopic
 nucleon-nucleon interaction applied to cluster radioactive decays (Erratum))

12 STNews Vol. 29 No. 1
それでは、修正される前の元レコードである CA156:241859 を表示してみましょう。

このように、最初のレコードを見て後に Erratum のレコードが見つかるわけではありません。また CA 抄録番号で => S 156:241859/TI や => S 156:241859/BI のように検索しても、このレコードしかヒットしません。

現在 Erratum のレコードは、約 65,000 件存在します。特許の場合は修正されても Erratum のレコードは作成されません。

【Erratum の最初のレコード例】

AN 2012:228835 CAPLUS Full-text
DN 156:241859
ED Entered STN: 23 Feb 2012
TI Optical potential obtained from relativistic-mean-field theory-based microscopic nucleon-nucleon interaction. Applied to cluster radioactive decays
AU Singh, BirBikram; Shuyan, M.: Patra, S. K.; Gupta, Raj K.
CS Institute of Physics, Bhubaneswar, 751 005, India
SO Journal of Physics G: Nuclear and Particle Physics (2012), 39 Q2, 025101/1-025101/10 CODEN: JGPGE; ISSN: 0954-3899
DT Journal
LA English
CC 70-1 (Nuclear Phenomena)
AB A microscopic nucleon-nucleon (NN) interaction is derived from the popular relativistic-mean-field (RMF) theory Lagrangian and used to obtain the optical potential by folding it with the RMF densities of cluster and daughter nuclei. The NN-interaction is remarkably related to the inbuilt fundamental parameters of RMF theory, and the results of the application of the so obtained optical potential, made to exotic cluster radioactive decays and alpha + alpha scattering, are found comparable to that for the well-known phenomenon.
MY effective NN-interaction. The RMF-based NN-interaction can also be used to calculate a number of other nuclear observables.
ST Optical potential relativistic mean field theory cluster radioactive decay; microscopic nucleon interaction cluster radioactive decay
IT Nuclear optical potential
Nucleon-nucleon potential
Radioactive decay
CT Optical potential obtained from relativistic-mean-field theory-based microscopic nucleon-nucleon interaction applied to cluster radioactive decays
IT Mean-field theory
(Relativistic; optical potential obtained from relativistic-mean-field theory-based microscopic nucleon-nucleon interaction applied to cluster radioactive decays)
IT 13867-62-9, formation (nonpreparative), 13966-28-4, Lead 208, formation (nonpreparative) 14762-75-5, Carbon14, formation (nonpreparative) 15092-71-4, Mg28, formation (nonpreparative) 20508-69-4, Ne24, formation (nonpreparative) 23448-36-4, Fo23, formation (nonpreparative) 34809-94-4, Mg30, formation (nonpreparative)
RL: FMU (Formation, unclassified); FORM (Formation, nonpreparative)
(Relativistic potential obtained from relativistic-mean-field theory-based microscopic nucleon-nucleon interaction applied to cluster radioactive decays)
RL: RCT (Reactant); RACT (Reactant or reagent)
(Relativistic potential obtained from relativistic-mean-field theory-based microscopic nucleon-nucleon interaction applied to cluster radioactive decays)
RE CNT 38 THERE ARE 36 CITED REFERENCES AVAILABLE FOR THIS RECORD
CITED REFERENCES
(1) Arumugam, P; Phys Lett B 2004, V601, P51 CAPLUS
(2) Audi, G; Nucl Phys A 2003, V729, P337
(4) Bladowske, R; Phys Rev Lett 1988, V61, P1930 CAPLUS
(5) Boguta, J; Nucl Phys A 1977, V202, P413
(6) Boguta, J; Phys Lett B 1983, V120, P289
(7) Brockmann, R; Phys Rev C 1977, V16, P1282 CAPLUS
(8) Brockmann, R; Phys Rev C 1978, V18, P1510 CAPLUS
(9) Buck, B; At Data Nucl Data Tables 1992, V54, P54
(10) Buck, B; Phys Rev C 1989, V39, P2097 CAPLUS
(11) Chamon, L; Phys Rev C 2011, V83, P034017
(12) Goldfarb, L; Nucl Phys A 1983, V401, P557

STNews Vol. 29 No. 1 13
(1) 古い年代の修正レコード
オンライン上のデータを修正することが技術的に容易ではなかったため、新規にレコードを作成していました。

(2) 現在の修正レコード
CAS では CA 収録の基準日（主要国で公報発行後 27 日）以内に索引を完成させることを保証しています。しかし、そのための配列情報の入手に時間がかかることがあります。このような場合に、別途索引引のレコードを修正レコードとして作成しています。

【Correction 前のレコード例】
AN 2006:658689 CAPLUS Full-text
DN 145:101215
TI Manipulation of immune responses by targeted administration of biological response modifiers into lymphoid organs
IN Kudwig, Thomas; Bot, Adrian Ion
PA Mannkind Corporation, USA
CODEN: PIIX02
DT Patent
LA English
FAN CNT 1
PATENT NO. KIND DATE APPLICATION NO. DATE
----------------- ------ ------------------
WO 2006071934 A3 20061228
WO 2006071934 A9 20071011
IT 9001-84-7, Phospholipase A2 9074-87-7, Prostate-specific membrane antigen RL: BSH (Biological study, unclassified); THU (Therapeutic use); B1OL (Biological study); USES (Uses)
INO (intralymphatic administration of immunomodulators for manipulation of immune response to)
IT 9041-38-70, Teichoic acid, lipo-
RL: THU (Therapeutic use); B1OL (Biological study); USES (Uses)
(IPO: manipulation of immune responses by targeted administration into lymphoid organs of)
IT 24939-03-5, Poly (1:C) RL: BSH (Biological study, unclassified); PAC (Pharmacological activity); THU (Therapeutic use); B1OL (Biological study); USES (Uses)
(Manipulation of immune responses by targeted administration into lymphoid organs of)
IT 99011-02-6, Iminiquimod 144875-48-9, Resiquimod RL: THU (Therapeutic use); B1OL (Biological study); USES (Uses)
(Manipulation of immune responses by targeted administration into lymphoid organs of)

【Correction のレコード例】
AN 2006:774735 CAPLUS Full-text
Correction of: 2006:658689
DN 145:165519
TI Manipulation of immune responses by targeted administration of biological response modifiers into lymphoid organs
IN Kudwig, Thomas; Bot, Adrian Ion
PA Mannkind Corporation, USA
CODEN: PIIX02
DT Patent
LA English
FAN CNT 1
PATENT NO. KIND DATE APPLICATION NO. DATE
----------------- ------ ------------------
WO 2006071934 A3 20061228
WO 2006071934 A9 20071011
IT 9001-84-7, Phospholipase A2 9074-87-7, Prostate-specific membrane antigen RL: BSH (Biological study, unclassified); THU (Therapeutic use); B1OL (Biological study); USES (Uses)
INO (intralymphatic administration of immunomodulators for manipulation of immune response to)
IT 9041-38-70, Teichoic acid, lipo-
RL: THU (Therapeutic use); B1OL (Biological study); USES (Uses)
(Manipulation of immune responses by targeted administration into lymphoid organs of)
IT 24939-03-5, Poly (1:C) RL: BSH (Biological study, unclassified); PAC (Pharmacological activity); THU (Therapeutic use); B1OL (Biological study); USES (Uses)
(Manipulation of immune responses by targeted administration into lymphoid organs of)
IT 99011-02-6, Iminiquimod 144875-48-9, Resiquimod RL: THU (Therapeutic use); B1OL (Biological study); USES (Uses)
(Manipulation of immune responses by targeted administration into lymphoid organs of)

CAS 登録番号の数（索引されている化合物数）
6 個

CAS 登録番号の数（索引されている化合物数）
41 個
Correction レコードの検索

Correction レコードの場合は、元のレコード番号 (AN)、または CA 抄録番号 (DN) で検索すると、元のレコードと修正レコードの両方がヒットします。修正レコードのレコード番号 (AN) や CA 抄録番号 (DN) で検索すると、修正レコードのみがヒットします。Correction の場合は Errata とは異なり、元レコードを参照する必要がないためです。

特許番号など、特許情報から検索した場合は修正レコードのみがヒットします。

キーワード検索では、修正レコードと元レコードの両方がヒットします。

また、重複文献除去を実行すると、AN の新しいレコード（修正レコード）のみが残ります。
分割レコード

I レコード中に収録できるデータ量にはシステム上の制限があるため、索引の数が約 5,000 を超える場合は複数のレコードに索引を分割して収録しています。主に配列の論文・特許や、Prophetic 物質が多数記載されている化合物特許の場合にこのような分割レコードが存在します。

分割レコードは、抄録中に何件のレコードに分割されているかを示す記述があることから識別することができます。CAplus ファイルには現在、本来 700 件の文献が約 8,300 レコードに分割され、見かけ上別のレコードとして収録されています。その大部分は特許ですが、雑誌論文の分割レコードも存在します。

分割レコードの注意点

分割レコードの注意点は、「対応特許情報が連続する分割レコードの中で最も古い (AN が小さい) レコードにのみ追加される」という点です。重複文献除去 (DUPLICATE REMOVE) により、これら複数に分割されたレコードを 1 件にまとめることができます。その場合は最新の (AN が最も大きい) レコードが残る点に留意してください。

【分割レコード例】

AN 2010:529529 CAPPLUS Full-text
DN 152:478611
TI Preparation of arylcyclohexanidine derivatives as novel herbicides
TJ 新規除草剤としてのアリールシクロヘキサンオニ誘導体の調製 [機械翻訳]
IN Mathews, Christopher John; Clough, John Martin; Beaumont, Kevin; Tyte,
Malloney; Robinson, Louisa; Jeannart, Stephane Andre Marie
PA Syngenta Limited, UK
CODEN: PIKXJ2
DT Patent
LA English
FAN CNT 4

<table>
<thead>
<tr>
<th>PATENT NO.</th>
<th>KIND</th>
<th>DATE</th>
<th>APPLICATION NO.</th>
<th>DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>WO 2010046194</td>
<td>A1</td>
<td>20100429</td>
<td>WO 2009-XA62327</td>
<td>20090923</td>
</tr>
<tr>
<td>WO 2010046194</td>
<td>A1</td>
<td>20100429</td>
<td>WO 2009-XB62327</td>
<td>20090923</td>
</tr>
</tbody>
</table>

PAT doping の場合は、分割したレコード数に応じて受理官庁の国コードがXA、XB...のように書き換えられている

抄録 (AB) 中には、このレコードが分割レコードの一つであることを示す記述がある

このような分割レコードを集めるには、標題を検索してください。（* 検索語数が多い場合は HCAplus/HCA ファイルをご利用ください）

⇒ S PREPARATION OF ARYLCYCLOHEXANIDINE DERIVATIVES AS NOVEL HERBICIDES/II
L1 4 PREPARATION OF ARYLCYCLOHEXANIDINE DERIVATIVES AS NOVEL HERBICIDES/II
(©PREPARATION (II) ARYLCYCLOHEXANIDINE (II) DERIVATIVES (II) NOVEL (II) HERBICIDES) /II)
このようなイレギュラーニーレコードがCAplus/CAファイルに存在することを、ご存じでしたでしょうか？
それぞれのレコードの特徴を理解し、必要な情報を活用してください。
AGRICOLA ファイル

AGRICOLA ファイルは、農業および農業関連分野の文献情報を収録するデータベースです。当ファイルがリロードされ、以下の強化・変更が行われました。

新規検索フィールドの追加
- /AB : 抄録
- /NR : レポート番号
- /PB : 出版社
- /W.C.T. : 機関の語数

メニューや他の検索の強化
基本検索（BI）, 抄録（/AB）, 機関（/TI）にて、中間一致、後方一致検索が利用可能になりました。

ストップワードの廃止
基本検索（/BI）などにおけるストップワードが廃止されました。

テキスト中の数値検索機能（Version 2）の追加
検索、抄録内数値数値検索が可能になりました。搭載された数値検索機能は、2012年4月にWPIファイルに搭載された機能と同じversion 2です。詳細は、STNews Vol.28 No.4、または2012年ユーザーマニュアルをご覧ください。

CAS 登録番号、化学物質名情報の削除
CAS登録番号および化学物質名フィールド（/RN）と化学物質名フィールド（/CN）が削除されました。

CAS登録番号が削除されたことにより、REGISTRYファイルのL番号を使ったクロスオーバー検索は利用できなくなりました。これに伴い、当ファイルはCASRNSクラスターから削除されました。

削除された検索フィールド
- /BL
 - /CTLC（/CTに統合されました）
 - /GTO（/GTに統合されました）
 - /LCN（/NTEに統合されました）

入力日（ED）について
入力日（ED）が下記のように変更されました。現在収録されているレコードすべての入力日（ED）および更新日（UP）は2012年以降です。
- 2012年1月からリロード前までに収録されたレコード従来通りの入力日

2011年12月以前に収録されたレコード
2012年1月の日付

レコード番号（AN）について
リロード前に収録されていたすべてのレコードのAN（レコード番号）が変更されました。リロード前のANを用いた検索では目的のレコードを得られませんので、再度検索を実行してください。

アラートに関するお知らせ
SDI検索を20件までのオフラインまたはEMAIL布鲁ムが含まれるスケジュールが廃止されました。そのため、回答が1〜20件の場合でも表示料金が課金されます。

EMBASE ファイル

検索結果のレコード表示順序変更、会議抄録および会議総説レコードの索引方針、EMTREE語のオンラインソーシャルランキング更新

EMBASE ファイルは、生物医学および薬学医学領域の世界中の文献を収録する文献データベースです。

検索結果のレコード表示順序変更
前号（STNews Vol.28 No.6）で会議抄録および会議総説が当ファイルの収録対象に追加されたことをお知らせしましたが、それに伴い検索結果の回答集合（L番号）に含まれるレコードの並び順が変更されました。

セグメントの優先順位とレコード番号（AN）の形式
現在、EMBASEファイルは、全てのセグメントから構成されています。すべてのレコード番号（AN）は10桁ですが、セグメントにより番号形式は異なります。各セグメントの番号形式および検索結果の並び順の優先順位は下記の通りです。

<table>
<thead>
<tr>
<th>優先順位</th>
<th>セグメント</th>
<th>収録年</th>
<th>レコード番号の形式（各セグメントの最初の番号）</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>EMBASE（Regular Embase）</td>
<td>1974-</td>
<td>西暦 + 6桁 (19740000001)</td>
</tr>
<tr>
<td>2</td>
<td>会議抄録、会議総説（*）</td>
<td>2009-</td>
<td>005 + 連続番号 (0050000000)</td>
</tr>
<tr>
<td>3</td>
<td>EMBASE Classic</td>
<td>1947-1973</td>
<td>0047 + 連続番号 (00470000001)</td>
</tr>
<tr>
<td>4</td>
<td>EMBASE（MEDLINE由来）</td>
<td>1948-</td>
<td>連続番号 (00000000001)</td>
</tr>
</tbody>
</table>

* 資料種類がConference ArticleおよびConference Proceedingのレコードは、従来通りEMBASE（Regular EMBASE）セグメントに含まれています。
検索結果の並び順を変更する方法
回答集合中の並び順を変更したい場合は、SORT コマンドを利用して並べ替えます。

> FILE EMBASE
> S. 検索式
L1 50 ← 結果は上記のセグメントの優先順で表示されます
> SORT PY L1 1 ← 発行年順に並べ替えます（＊）
L2 50 SORT L1 1 PY
* 発行年が同じ場合は、セグメントの優先順に並びます。

会議抄録および会議総説レコードの索引方法
EMBASE ファイルに収録される会議抄録、会議総説レコードの索引は、自動化索引を取り入れています。この自動化索引は、神経と抄録を対象に、アルゴリズムにより統制語（EMTREE 語）が付与されます。
自動化索引では、主題の統制語を付与することは可能ですが、リンク語は付与されません。そのため、検索式にリンク語を使用すると、自動的に会議抄録、会議総説のレコードが除かれますのでご注意ください。

EMTREE 語のオンラインソララス更新
EMTREE 語のオンラインソララス更新が年 3 回きましたが、今年 3 回目の更新が 10 月 8 日に行われました。
最新更新分では、1,305 語（Drug term: 220 語、Non-drug term: 1,085 語）の EMTREE 語が新規に追加されました。
詳細に関しては、Elsevier 社のニュースをご覧ください。

なお、ファイル全体の索引語の書き換えは、今後も不定期に実行されます。このため、非優先語（オンラインソララス中の UF で表示されるツール）でも件数がある場合には、UF も含めて検索してください。また、アラート（自動 SDI 検索）の質問式も変更を行います。

IMSPATENTS ファイルリロード
IMSPATENTS ファイルは、商業的に重要な医薬品の特許ファミリー情報および特許期間に関する情報を収録しているデータベースです。当ファイルがリロードされ、以下の強化・変更が行われました。

特許番号（PN、PRN）の番号形式変更
特許番号（PN、PRN）の番号形式が STN の標準的な形式になりました。特に、AU、HK、IN、KR、RU、SU、WO の特許について特許番号が更新されました。

構造データに関する変更
- IMS Health 社由来の構造データが STR 表示形式にて表示されるようになりました。
- 複数の医薬品原料を混合した医薬品について、成分由来の構造を表示できるようになりました。
- STS（立体集合情報を含む構造図）表示フィールドが廃止されました。現在、STS および STF フィールドを指定した場合、構造図は STR 表示形式で表示されます。

新規検索フィールド
- /IT：統制語
IT フィールドには、医薬品に関する記述（drug description）や特許情報（優先権主張年）が収録されています。

削除されたフィールドおよび定型表示形式
- /CK（クロスオープンキー）
- /OS（その他の収録源、IMSRESEARCH ファイルレコード番号）
- STD, ISTD, CYD, ICYD 表示形式
* CK, OS の削除に伴い、IMSRESEARCH ファイルへのリンクが削除されました。

表示内容の変更
SCAN 表示形式にレコード番号（AN）が含まれなくなりました。

定型表示形式における表示の変更
化学物質の一般名は、INN や USAN などの出典とともに表示されるようになりました。

特許発行国（PC）、優先権主張国（PRC）、特許出願住所（PAA）で、従来の ISO 国名コードに加え、国名テキスト情報でも検索できるようになりました。

近接検索をの追加
- 特許情報（PI）、優先権情報（PRAI）、出願人情報（PA）フィールド中の情報を（P）演算子で限定できるように
ファイル

= 共通特許分類 (CPC) の収録開始、フィンランド特許種別コードの変更、米国特許分類の訂正

INPADOCDB/INPAFAMDB ファイルは、世界 92 特許発行機関から発行される特許、実用新案の書誌情報、対応特許情報、引用情報および法的状況データを収録する特許データベースです。

■ 共通特許分類 (CPC) の収録開始

更新週 2012 年 47 週より、INPADOCDB/INPAFAMDB ファイルの新規レコードおよび更新されたレコードにおいて、共通特許分類 (CPC) の収録を開始しました。

既存レコードに関しては、数週間で収録される予定です。CPC の収録は、欧州特許庁 (EPO) によってヨーロッパ特許分類 (ECLA, ICO) からの機械変換で行われます。

現在収録されている ECLA および ICO はレコードに残りますが更新はされません。また、CPC の収録は完了後、レコードから削除される予定です。米国特許分類 (USC) は、CPC 付与後も当面残られる予定です。

■ CPC の入力形態

CPC は IPC を拡張した以下の形式で表記されます。

ANNANNNNNNNNnn (A: アルファベット, N, n: 数字)

検索の際のコードの入力形式は、IPC に準じます。

■ 新規検索ールド

<table>
<thead>
<tr>
<th>CPC</th>
<th>共通特許分類 (CPC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPC.ACD</td>
<td>CPC、発効日</td>
</tr>
<tr>
<td>CPC.KW</td>
<td>CPC、キーワード</td>
</tr>
<tr>
<td>CPC.VER</td>
<td>CPC、版</td>
</tr>
</tbody>
</table>

CPC オンラインシーケンスが利用可能です。関係コードは ECLA, ICO シーケンスと同様です。関係コードの詳細は、オンライン中で => HELP RCODE でご確認いただけます。

・入力例

- サブクラスまで指定
 ⇒ S A61K/CPC ー A61K の下位を含め検索
- メイングループまで指定
 ⇒ S A61K009/CPC ー A61K009 の下位を含め検索
- サブグループまで指定
 ⇒ S A61K009-7038/CPC ー A61K009-7038 のみを検索
 ⇒ S A61K009-7038+NT/CPC ー A61K009-7038 の下位を含めて検索

* サブグループの下位を含めた検索は、トランケーション記号ではなく、シーケンス機能の利用がおすすめです。

◇ 新規フィールドおよび表示形式

CPC は新規の CPC フィールドに収録されます。

CPC は下記の表示形式で表示されます。

- カスタム表示形式: CPC, CPC.TAB
- * CPC.TAB は表示形式で表示されます。
- 望定表示形式: IND, STD, ALL, MAX, BRIEF, FFAM, MFAM, IFAM

◇ CPC 付与機関と CPC 付与のタイムラグについて

CPC は現在、下記の 2 国際特許機関と 4 ヶ国国特許庁で付与されます。

- 欧州特許庁 (EPO)，米国特許商標庁 (USPTO)，スペイン特許商標庁，フィンランド特許庁，英国知的財産庁，スウェーデン特許登録庁

上記の機関が発行したすべての EP, US 特許, EPO が審査をした PCT 出願特許およびスペイン (ES), フィンランド (FI), 英国 (GB), スウェーデン (SE) 特許の公報については、公報発行日に CPC が付与されます。

EPO が分類を付与するその他の特許については、CPC が付与されるまで最大 6 ヶ月のタイムラグが生じます。そのため検索やアラートの質問に CPC を含める場合はご注意ください。

■ フィンランド特許種別コードの変更

フィンランド特許種別コードが下記のように変更されました。

<table>
<thead>
<tr>
<th>変更前</th>
<th>変更後</th>
</tr>
</thead>
<tbody>
<tr>
<td>FID0</td>
<td>FIA0</td>
</tr>
<tr>
<td>FIV0</td>
<td>FIU0</td>
</tr>
</tbody>
</table>

FIV0 FIU0
■ 米国特許分類の訂正
欧州特許庁（EPO）が約 200 万件の米国公報について、米国特許分類の訂正を行いました。この変更は、2013 年 1 月に開始される CPC（Cooperative Patent Classification）を導入するためと考えられます。
これに伴い、STN の INPADOC ファイルでは、更新週 2012 年 42 週（更新日 2012 年 10 月 18 日）に米国特許分類の訂正が行われました。

JPFULL ファイル
リリース
日本特許の英語全文データベースである JPFULL ファイルが、STN に新規搭載されました。詳細は同号（STNews Vol.29 No.1）の JPFULL ファイルがリリースされました！の項をご覧ください。

MARPAT ファイル
データの週扱及収録
MARPAT ファイルは、1961 年以降に発行された特許中のマルクシュ構造を含む特許情報データベースです。
STNews Vol.28 No.3 で、1987 年の英語・ドイツ語・日本語で記載された特許について CAS 作成データの週扱を開始したことをお知らせしましたが、英語・ドイツ語特許に関して 1987 年分の週扱及び収録が完了しました。現在は 1985-1986 年分の週扱及び収録を行っています。
日本語記載の特許に関しては、引き続き 1987 年発行分の週扱及び収録を行っています。
今回の週扱及び収録により、2,600 件を超える特許公報からマルクシュ構造データが追加されました。

MEDLINE ファイル
構造化抄録（Structured Abstract）の見出し語追加
2012 年 10 月現在、データベース全体の約 9.5% にあたる約 208 万件のレコードに構造化抄録が収録されています。
構造化抄録（Structured Abstract）では抄録をいくつかのパラグラフに分けて収録しており、各パラグラフは見出し語（BACKGROUND、CONCLUSIONS：など）が付いています。
このパラグラフの見出し語が 304 語追加され、見出し語が 1,949 語になりました。
すべての見出し語のリストは、NLM の以下のサイトより入手できます。

■ MeSH 改訂に伴う索引付与の一時停止
当ファイルでは、MeSH（Medical Subject Headings）と呼ばれる統制語を毎年改訂しています。2012 年 11 月 15 日より、NLM（National Library of Medicine：MEDLINE の作成機関）は 2013 年版 MeSH への対応のために索引付与を一時的に停止していましたが、2012 年 12 月 11 日より 2013 年版 MeSH タームの付与を開始いたしました。なお、2013 年 1 月 26 日にリロードが予定されています。

METADEX ファイル
リリード
METADEX ファイルは、冶金学と材料に関する世界中の文献情報を収録するデータベースです。当ファイルがリロードされ、以下の強化・変更が行われました。

◇ 特許情報の強化
500 万件以上の特許情報（*）が追加収録されました。これに伴い特許収録期間は 1969 年以降から現在までに変わりました。（従来の特許収録期間は 1979 年から 1994 年まででした。）
* METADEX ファイルの特許情報は米国、イギリス、カナダの 3 ヶ国のみ収録されています。また収録期間は特許発行国により異なります。

◇ 出願情報に関する変更
出願情報は収録源（SO）フィールドに収録されるようになりました。

◇ テキスト中の数値検索機能（Version 2）の追加
標準・抄録・テキスト内の数値検索が可能になりました。また、数値検索機能は、2012 年 4 月に WPI ファイルに搭載された機能と同じ version 2 です。詳細は、STNews Vol.28
No.4, または 2012 年 ユーザーミーティング資料をご覧ください。

◇ 中間一致、後方一致検索の強化
基本索引（BI）に加え、標題（TI）、抄録（/AB）でも中間一致・後方一致検索が可能になりました。

◇ 新規検索フィールドの追加
- /AB（抄録）
- /FTDOI（デジタルオブジェクト識別子）
 収録源（SO）フィールド中のデジタルオブジェクト識別子（DOI）の情報を検索するフィールド
- /MT（会議名）
 旧/MD（会議開催日）、/MY（会議開催年）、/ML（会議開催地）フィールドをまとめたフィールド
- /PUI（発行者識別コード）

◇ 削除された検索フィールド
- /AD（特許出願日）
- /CY（発行国）
- /ET（元素記号）
- /MD（会議開催日）
- /MY（会議開催年）
- /ML（会議開催地）

◇ 入力日（ED）について
リコードに伴い、入力日（ED）が下記のように変更されました。現在収録されているレコードすべての入力日（ED）および更新日（UP）は 2012 年以降です。
- 2012 年 1 月からリコード前までに収録されたレコード従来通りの入力日
- 2011 年 12 月以前に収録されたレコード
 2012 年 1 月の日付

◇ レコード番号（AN）について
リコードに伴い、すべてのレコードに付与されているレコード番号（AN）の形式が、西暦 4 桁:番号に変更されました。リコード前の AN を用いた検索では目的のレコードが得られませんので、再度検索を実行してください。

ReaxysFile ファイル
- 収録対象物質について
ReaxysFile ファイルは、化学物質同定情報、物性情報、反応情報を収録するデータベースです。当ファイルは 2012 年 7 月末にリロードされ、GMELIN、PCD 由来のデータを統合しました。
STNews Vol.28 No.5 で、PCD（特許由来の物質）は、「国際特許分類 C07、A61K、C09B が付与されている PCT 出願、ヨーロッパ特許、または米国特許中の物質」と紹介しましたが、A01N（人間または動物または植物の本体、またはそれらの一部の保存；殺生物剤；有害生物忌避剤または誘引剤；植物生長調節剤）も収録対象であることがデータベース製作者からの情報提供でわかりましたのでお知らせします。

◇ A01N の収録対象年
- 2003 年～2011 年 部分収録
- 2012 年 以降 完全収録

USGENE ファイル
- 特許関連情報の追及収録
USGENE ファイルは、米国の公開特許・登録特許のタンパク・核酸の配列情報を収録するデータベースです。
100 万件以上のレコードに以下の特許関連情報が追及収録され、これらの情報の収録期間が 2005 年 1 月発行分以降となりました。

◇ 追及収録されたデータ

<table>
<thead>
<tr>
<th>PRAI</th>
<th>優先権情報</th>
</tr>
</thead>
<tbody>
<tr>
<td>RLI</td>
<td>関連出願情報</td>
</tr>
<tr>
<td>XPD, NTE</td>
<td>特許審査日，期間調整情報</td>
</tr>
<tr>
<td>DESC</td>
<td>配列の説明</td>
</tr>
<tr>
<td>PSL</td>
<td>特許申請の配列の記載位置</td>
</tr>
</tbody>
</table>

* 49,998 以上の配列が記載された特許由来のレコードについては、今回の追及収録は行われていません。
アラート

− SDI STANDARD コマンドの追加

STN のアラート（自動 SDI 検索）の設定をより簡単に行える SDI STANDARD コマンドが利用可能になりました。SDI STANDARD コマンドを用いると、最小限の項目を入力するだけでアラートの登録が可能です。入力が省略された項目は、デフォルトの設定が適用されます。

SDI STANDARD コマンドは、単一ファイルのアラート、マルチファイルアラート、パッケージアラート、SMARTracker で利用できます。なお、従来の SDI コマンドも引き続き利用可能です。

◇ アラート登録例（単一ファイル）

```sql
> ! SDI STANDARD
ENTER QUERY 'L1' FOR SDI REQUEST OR (END): L1
ENTER UPDATE FIELD CODE (UP), UPN, UPIT, UPI, ED, UPP, UPoG OR ?:
ENTER COST CENTER (NONE) OR NONE:?
ENTER TITLE (NONE): SDI STANDARD TEST
ENTER EMAIL ID (NONE): support@jaici.or.jp
SUPPORT@JAICI.OR.JP
ENTER PRINT FORMAT (BIB) OR ?: BIB
QUERY L1 HAS BEEN SAVED AS SDI REQUEST 'AAD01/5'
```

* 従来の SDI コマンドでは 19 項目の入力が必要ですが、SDI STANDARD コマンドでは 6 項目の入力で登録できます。

各ファイル記事の補足情報

− 従来の SDI コマンドでは 19 項目の入力が必要ですが、SDI STANDARD コマンドでは 6 項目の入力で登録できます。

STN コマンド

− SET HEADING, SET PADDING, SET PAGELENGTH の廃止

GUI 環境の整備に伴い、下記の SET オプションは廃止されました。

・ SET HEADING
・ SET PADDING
・ SET PAGELENGTH

STN Viewer

− JPFULL ファイルの追加

STN Viewer は STN の特許管理・評価ツールです。STN で検索した特許を STN Viewer ヘイントルすることで、対応する特許全文を効率良く評価することができます。

STN News Vol. 29 No. 1 23
STN Viewer に日本特許の全文データベース JPFULL ファイルが追加されました。

◇ 料金
全文レコード表示料金（1件あたり）：419 円

◇ STN Express, STN on the Web と STN Viewer の関連について
(1) STN on the Web を利用されている場合
今回の STN Viewer の強化は、自動的に反映されています。
(2) STN Express を利用されている場合
- 自動更新を設定している場合
 今回の STN Viewer の強化は、自動的に反映されています。
- 手動更新を行っている場合
 ダウンロードサイトより STN Express サポートファイルを入手し、更新を実行してください。

STN Express V8.4 以前を利用されている方は、ぜひ最新版の STN Express V8.5 にアップグレードしてご利用ください。

即時ダウンロードが可能です。

◆ TIB Hannover から自動で納品される文献が増えました。
(70,000 ISSN 以上になりました)

現在 FIZ Autodoc では、18 万誌以上が自動応答で納品可能です。
自動応答で納品できないものは、FIZ スタッフが内容を確認し、文書を手配いたします。（マニュアル処理）

FIZ Autodoc の詳細につきましては以下の弊協会ホームページをご覧ください。
http://www.jaici.or.jp/DDS/dds.htm

また、FIZ Autodoc ID のお申込みについては、情報事業部カスタマーグループ文献複写担当までお気軽にお問い合わせください。

情報事業部カスタマーグループ
文献複写担当
TEL：0120-151-462 FAX：03-5978-4090
Email address：autodoc-dds@jaici.or.jp

FIZ AutoDoc 機能強化のお知らせ

FIZ AutoDoc は約 18 万誌の雑誌、会議録、書籍、特許明細等を STN の検索結果よりオンラインで注文できる文献複写サービスです。

このたび、下記の強化が行われました。

◆ 即時ダウンロードが可能な提供出版社に Informa Healthcare が追加されました。
Ahead-of-print を含む 160 誌以上が対象です。

即時ダウンロードはその場で PDF ファイルをダウンロードすることができ便利なオプションです。特に設定することなく、指定した文献が即時ダウンロード可能であれば、ダウンロードのオプションボタン Purchase Now が現れます。

現在 FIZ AutoDoc では 5,700 誌以上の電子ジャーナルを

§ STN 講習会 §

STN を検索する際に必要な知識や技術を身につけていただけるように、検索に必要なコマンドや、各データベースの概要・検索のポイントなどをご説明する講習会を毎月開催しています。

会場は東京会場、または大阪会場です。
各会場での開催内容と日程につきましては、同封のリーフレットまたは弊協会ホームページをご覧ください。

STN 講習会のサイト
https://www.jaici.or.jp/seminar/index.php

24 STNews Vol. 29 No. 1
ホームページの資料掲載のお知らせ

2012年10月～2012年11月にホームページに掲載しましたSTN関連の資料をお知らせします。

■ 新規掲載資料

<table>
<thead>
<tr>
<th>資料名</th>
<th>内 容</th>
</tr>
</thead>
<tbody>
<tr>
<td>STN 医薬情報セミナー</td>
<td>2012年11月開催したSTN医薬情報セミナーの資料</td>
</tr>
<tr>
<td>STN 特許情報セミナー</td>
<td>2012年11月開催したSTN特許情報セミナーの資料</td>
</tr>
<tr>
<td>STN Viewerよくあるご質問（2012.11）</td>
<td>STN Viewerのよくあるご質問</td>
</tr>
<tr>
<td>新規ファイル-PQSciTech</td>
<td>STNインターネットセミナーの録画</td>
</tr>
<tr>
<td>構造検索テクニック-便利な作図（2）</td>
<td></td>
</tr>
<tr>
<td>JPULL</td>
<td>JPULLファイルのサマリーシート</td>
</tr>
<tr>
<td>ある物質Aから物質Bを合成する反応を検索する</td>
<td>検索テクニックのご紹介</td>
</tr>
<tr>
<td>iPS細胞に関する特許をSTNAnaVistで解析し、研究動向を把</td>
<td></td>
</tr>
<tr>
<td>STN Viewer利用ガイド（2012.11）</td>
<td>STN Viewerの利用ガイド</td>
</tr>
<tr>
<td>JPFULL</td>
<td>JPFULLファイルのサマリーシート</td>
</tr>
<tr>
<td>改訂資料</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>資料名</th>
<th>内 容</th>
</tr>
</thead>
<tbody>
<tr>
<td>はじめのSTN</td>
<td>STN講習会テキスト</td>
</tr>
<tr>
<td>STN Viewer利用ガイド（2012.11）</td>
<td>STN Viewerの利用ガイド</td>
</tr>
<tr>
<td>IMSPATENTS</td>
<td>IMSPATENTSファイルのサマリーシート</td>
</tr>
<tr>
<td>USPATFULL</td>
<td>USPATFULLファイルのサマリーシート</td>
</tr>
<tr>
<td>USPAT2</td>
<td>USPAT2ファイルのサマリーシート</td>
</tr>
</tbody>
</table>

ぜひ技術資料をご活用ください。

URL: www.jaici.or.jp
インターネットセミナー

インターネットセミナーとは？
インターネット経由で視聴いただく、WebExを利用したオンライン形式のセミナーです。インターネットに接続したPCがあれば、場所を選ばずどこからでも受講できるのが特長です。チャットによるQ&Aも行えます。

2013年1月～2013年3月の開催予定（各回とも無料）

日本特許全文検索はJPFULLで！
新しくリリースされた日本特許全文データベースJPFULLファイルについて、収録内容やレコード構成、基本的な検索・表示方法などを説明します。また、STN独自の機能である物性値検索を含めたデモンストレーションもご覧いただけます。午前、午後の2回、各回とも同じ内容で開催します。

開催日時：2013年1月23日（水）第1回11:00～11:20　第2回15:00～15:20

使いこなしたい近接演算子
近接演算子を利用すると、検索語の位置関係を精密にコントロールした検索ができます。このセミナーでは、（T）演算子、NOT近接演算子について、便利な活用方法をご紹介します。使ったことがない、検索の仕組みを詳しく知りたい、という方は、この機会にぜひマスターしましょう！

開催日時：2013年2月13日（水）11:00～11:20

新特許分類CPC導入！
EPOおよびUSPTOで、新しい特許分類CPC（Cooperative Patent Classification）が導入されました。このセミナーでは、STNの主な特許データベースにおけるCPCの検索方法や表示方法などを、デモを交えてご説明します。

開催日時：2013年3月13日（水）11:00～11:20

*お申し込み方法、受講に必要な環境などの詳細は、弊協会ホームページをご覧ください。　www.jaici.or.jp/webex/e-seminar.html
*定員に達した場合は、キャンセル待ちでのお申し込みとなります。
社内研修の一環として、STN の出張講習会をお引き受けしています。実習用の PC をご用意いただければ、研修用 ID を用いて STN を使用しながらの講習も可能です。

● 出張講習会が効果的なケース

出張講習会をお申込みいただく理由として多いのは下記のようなケースです。

ケース 1: 定期講習会は受講したけど、なかなか STN を使いこなせない
ケース 2: 自社の調査業務に合った、実践的な検索法を教えて欲しい
ケース 3: 社内の検索スキルを統一するため、全員一緒に受講したい

● 料金：1 日講習会の基本料金は 50,000 円、半日の場合は 30,000 円です。

STN を定額契約でご利用の場合は、無料受講分を出張講習会に振り替えることができます！

● 内容

定期講習会または各種セミナー資料の中から、最適なものをテキストとして使用します。各種テキストは下記 URL をご参照ください。

定期講習会 https://www.jaici.or.jp/seminar/text.php
各種セミナー http://www.jaici.or.jp/stn/stn_doc_03.html

上記 URL の資料以外に、ご希望の調査テーマに関する御社独自の資料や実習用の練習問題も作成します！

● お問い合わせ先

内容や日程につきましてはご相談に応じます。お気軽にご連絡ください。

化学情報協会 情報事業部 テクニカルグループ（担当：船戸）
TEL: 0120-003-462 E-mail: support@jaici.or.jp
http://www.jaici.or.jp/stn/seminar_s.html

* 10 名以上の場合や遠隔地の場合は、別途追加料金がかかります。
ReaxysFile セミナー（実習付き）

ReaxysFile ファイルは化学物質同定情報、物性情報、反応情報を収録するデータベースです。2012年8月にリリースが行われ、新たに無機化合物（元 GMELIN ファイル）と特許由来の化合物（実験項目を含む）が収録されました。本セミナーでは、リリース情報を含めたReaxysFile ファイルの検索方法について実習付きでご紹介します。

東京 : 2月20日（水）13:00-17:00
2月21日（木）13:00-17:00
大阪 : 2月26日（火）13:00-17:00
2月27日（水）13:00-17:00

STN on the Web 活用セミナー（実習付き）

STN on the Web には便利な機能が多数搭載されていることをご存じですか？リンクをクリックするだけで、原報の入手や、被引用情報の検索を行うことができます。また、検索補助機能（Assistants 機能）を利用すると、CAplus/CA のダブルペーシング特許の重複除去を自動的に行ったり、アラートの登録を簡単に行うことができます。本セミナーを受講いただき、STN on the Web のメリットを実感してください。

東京 : 3月1日（金）13:30-15:30
大阪 : 3月8日（金）13:30-15:30

東京サービスセンター

京都サービスセンター

北アメリカ

STN コロンバス
CAS
P.O. Box 3012 Columbus, Ohio 43210-0012 U.S.A
CAS Customer Care:
Phone: 800-753-4227 (North America)
014-447-3700 (worldwide)
Fax: 614-447-3751
E-mail: help@cas.org
Internet: www.cas.org

ヨーロッパ

STN カールスルーヘ
FIZ Karlsruhe
P.O. Box 2465
76012 Karlsruhe
Germany
Phone: 49-7247-808 555
Fax: +49-7247-808-239
E-mail: helpdesk@fiz-karlsruhe.de
Internet: www.stn-international.de

日本

STN 東京
化学情報協会
〒113 0021 東京都文京区粟田町6 25 4 中居ビル
Phone:0120-002-462 (Help Desk)
0120-151-462(上記以外)
Fax:03-5978-4050
E-mail: support@jaici.or.jp (Help Desk)
customer@jaici.or.jp (上記以外)
Internet: www.jaici.or.jp