advancing structural science

CSD-Discovery

Knowledge-based computational approaches for drug discovery

Rupesh Chikhale MPharm., PhD., MRSC

Research and Application Scientist

Agenda

- CCDC Introduction
- Knowledge-based methods overview
 - Hermes
 - GOLD
 - Superstar
 - CrossMiner
 - CSD-Python API
- Q&A

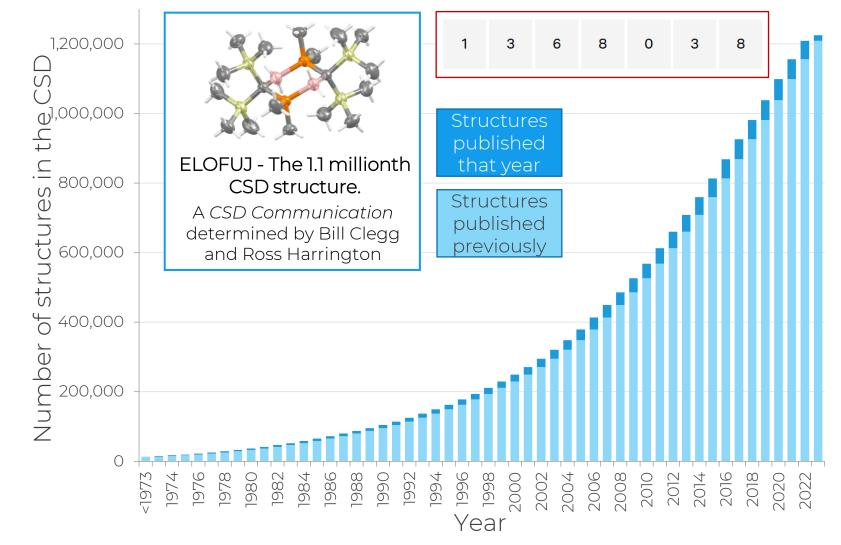
The Cambridge Crystallographic Data Centre

Established in 1965, Olga Kennard Department of Chemistry, University of Cambridge

What we do Charitable Objective:

Advancement of chemistry and crystallography for the public benefit

International repository of 3D curated structures

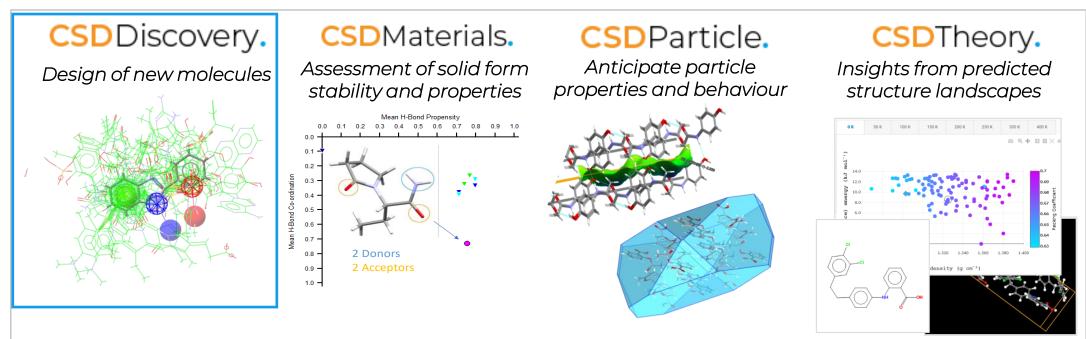

Scientific software

Collaborative research and knowledge-based services

Education and outreach

The Cambridge Structural Database

- Every published structure
 - Inc. ASAP & early view
 - CSD Communications
 - Patents
 - University repositories
 - Thesis
- Every entry enriched and annotated by experts
- Discoverability of data and knowledge
- Sustainable for over 57 years
- A trusted CoreTrustSeal repository



Our knowledge-based software solutions

CSDCore.

Search, visualise, analyse and communicate structural data Insights into molecular and crystal shape and interactions

Medicinal & Computational Chemists ♦ Crystallographers & Structural Biologists ♦ Solid Form & Crystallisation Scientists

CSD-Discovery overview

GOLD: Protein-ligand docking and virtual screening

SuperStar: Analyse, predict and understand protein and ligand interactions

CSD-CrossMiner: Interrogate the CSD and the PDB for common interaction patterns

Ligand-based virtual screening workflow to find new hits.

CSD-Conformer Generator: Generation of molecular conformations.

CSD-Ligand Overlay: Flexible alignment of ligands.

CSD Python API: Create CSD-driven analyses and workflows.

Script-based interfaces to the Field-Based Ligand Screener; protein cavity and sub-pocket search and comparison; protein-ligand substructure & interaction pattern mining.

CSD-Discovery in drug discovery

Knowledge-based tools for drug design

TARGET SELECTION

HIT IDENTIFICATION

Structure- based virtual screening.

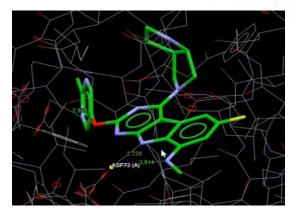
HIT TO LEAD

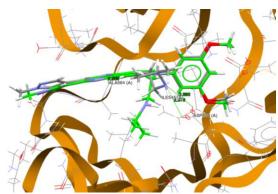

Assess how changes affect binding.
Optimize compound geometry.
Predict binding of small molecules to active pockets in proteins.

LEAD OPTIMISATION

Check the impact of changes with docking pose prediction. Understand how changes affect conformations.

DRUG DEVELOPMENT


Hermes: Macromolecules visualizer and interface for most CSD-Discovery



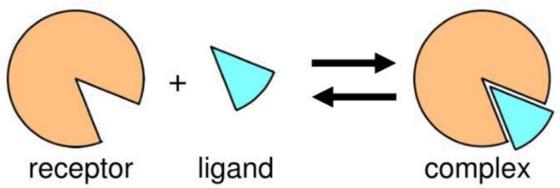
Hermes – Structure visualisation

With Hermes you can:

- Visualise and edit macromolecules in 3D including proteins, nucleic acids, antibodies and ligands.
- Navigate around the structure and modify the appearance to display ribbons, etc.
- Interface to GOLD, Mogul, SuperStar, the CSD Ligand Overlay, and descriptors for GOLD docking poses.
- Generate publication quality images and share sessions for effective scientific communication.

Hermes functionality

- 3D visualisation options:
 - Display styles, colours, labelling schemes, hide/unhide atoms, residues, ligands.
- Read in and prepare protein and ligand structures from external files:
 - Edit, prepare and add hydrogens, etc.
- The ability to:
 - Load and visualise contoured surfaces.
 - Overlay protein structures by least squares overlay or sequence alignment.
 - Measure and display distances, angles and torsion angles.
 - Find and display hydrogen bonds and nonbonded clashes, and customise how they are defined geometrically.
- Prepare and save publication quality displays



GOLD: Protein-ligand docking

Docking

Docking studies are computational techniques for the exploitation of the possible binding modes of a substrate to a given receptor, enzyme or other binding site.

GOLD: Protein-Ligand Docking Software

 GOLD has proven success in virtual screening, lead optimisation, and identifying the correct binding mode of active molecules.

 Relied on by researchers in academia and industry worldwide.

- Reliable
- Flexible
- Configurable

GOLD: Protein ligand docking

- Multiple scoring functions for scoring & rescoring.
- Ten constraints available including covalent docking, H-bonds constraint, scaffold constraint and pharmacophore constraint.
- Protein flexibility: ensemble docking (backbone), rotamers (side-chains), soft potentials (localised loop).
- Modified genetic algorithm can turn key water molecules on/off.
- Handles metals and automatically assigns a geometry during protein initialisation.

- User-friendly interface (Hermes)
- Available through the CSD Python API.
- GOLD on the cloud and GOLD HPC to screen hundreds of millions of compounds.

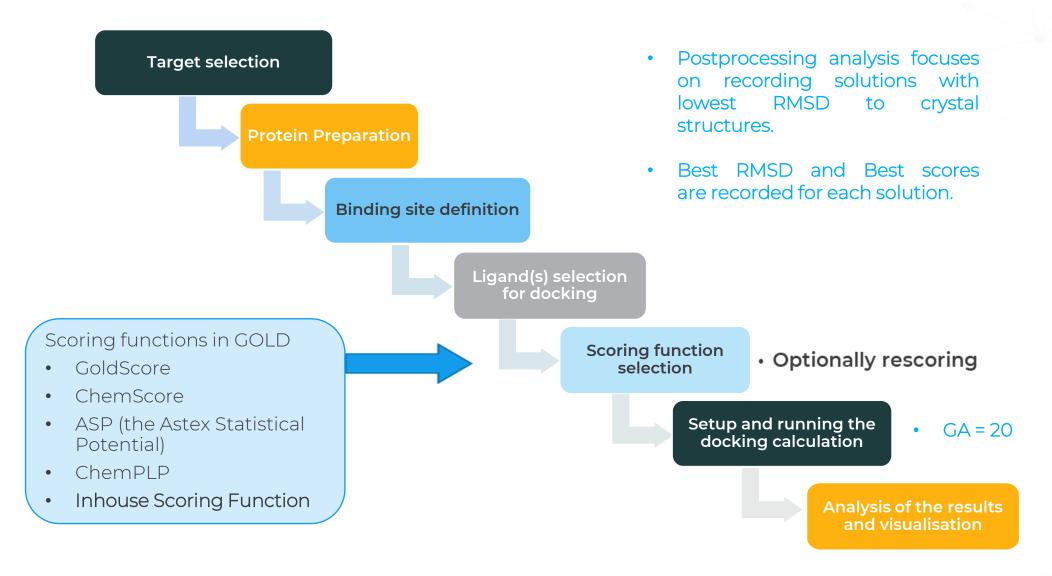
GOLD: Protein-Ligand docking software

Reliable

- Make confident binding mode predictions.
- database enrichments.
- Identify the correct binding mode

Flexible

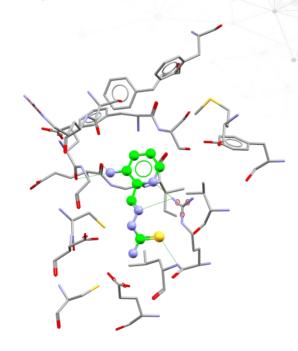
- Use ensemble docking to reflect different receptor conformations.
- Account for receptor flexibility through sidechain flexibility.
- Avoid computationally expensive sequential docking.



Configurable

- Adjust speed
- Select from a wide range of scoring functions.
- Employ a wide constraints.
- Eliminate unfavourable

Methodology for GOLD receptor-ligand docking studies



GOLD: Application in drug discovery

- Several PARP inhibitors for epithelial ovarian cancer (EOC) with BRCA gene mutations or defective homologous recombination (HR) repair.
- BRCA mutation reversal and restoration of HR repair has resulted in the PARP inhibitors being less effective in their treatment.
- Targeting HR repair would sensitize repair-proficient EOC to PARP inhibitors.
- Lin, et al., used virtual screening to investigate protein-ligand docking of the triapine-binding pocket on RNR to identify a next generation inhibitors for the treatment of ovarian cancer.
- Virtual screening using GOLD of over 200,000 compounds revealed hydrogen bonds and hydrophobic interactions with the triapine binding pocket. Hit-clustering was performed on the most promising 200 compounds, narrowing the candidate field down to 25 candidates.
- Experimental validation and further physicochemical analysis identified a potential candidate.

Docking post of triapine in the cavity was modelled with GOLD

scientific reports

OPEN In silico screening identifies a novel small molecule inhibitor that counteracts PARP inhibitor resistance in ovarian cancer

Z. Ping Lin^{1™}, Nour N. Al Zouabi^{1,6}, Mark L. Xu^{1,6}, Nicole E. Bowen⁴, Terence L. Wu³

GOLD: Application in various studies

In medicinal chemistry to design of novel drug molecules for Central Nervous System Disorders

Medicinal Chemistry

Article

Discovery of UCB9386: A Potent, Selective, and Brain-Penetrant Nuak1 Inhibitor Suitable for *In Vivo* Pharmacological Studies

Virtual Screening to identify novel of drug molecules against infectious disease

ACS | Infectious | Diseases

bs.acs.org/journal/aidcb

Article

Virtual Screening Uncovers DspS Activators That Disperse Pseudomonas aeruginosa Biofilms

Docking studies and pose prediction to discover therapeutic modulators for Alzheimer's disease

nature communications

Article

https://doi.org/10.1038/s41467-025-58496-w

Tip60 HAT activators as therapeutic modulators for Alzheimer's disease

In Agrochemical Development – For the development of drought resistant crop variety

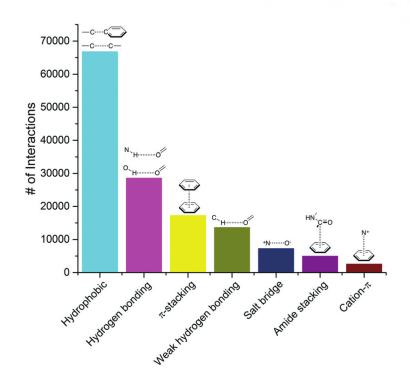
FISEVIER

Contents lists available at ScienceDirect

Plant Physiology and Biochemistry

ournal homepage: www.elsevier.com/locate/plaphy

Natural modulators of abscisic acid Signaling: Insights into polyphenol-based antagonists and their role in ABA receptor regulation

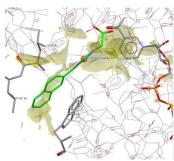

Superstar: Analysing interaction preferences

SuperStar: non-covalent interactions

Knowledge-based software

- Critical driving force for the structure, stability, and function of proteins.
- Important for drug discovery as their interplay is responsible for binding affinity within proteins and ligands.

Most common non-covalent interactions observed in protein-ligands extracted from the PDB

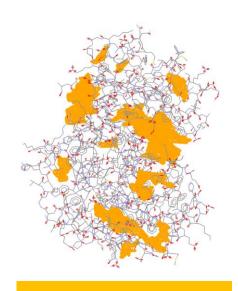


Target selection and validation

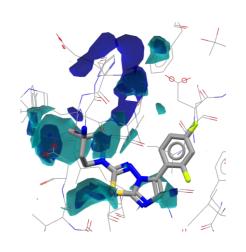
Given a whole protein and no prior knowledge, Fragment Hotspot Maps identify the location and quality of binding sites.

H-bond acceptor propensity map

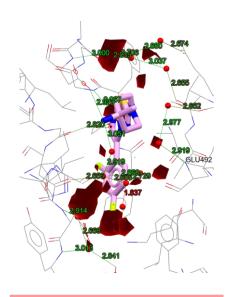
Identifying binding hot-spots in protein.

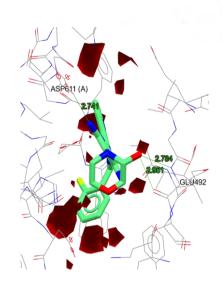

A knowledge-based library of intermolecular interactions derived from the CSD. SuperStar uses crystallographic information about non-bonded interactions to generate interaction maps within protein binding sites:

- Interaction preferences visualised simply in 3D
- Assess pocket druggability



SuperStar: applications


Knowledge-based software

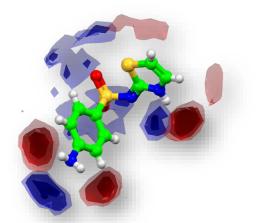

Cavity Detection

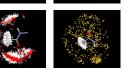
Hot-spots in proteins and ligands.

Identification of structural waters

Validation of docking poses

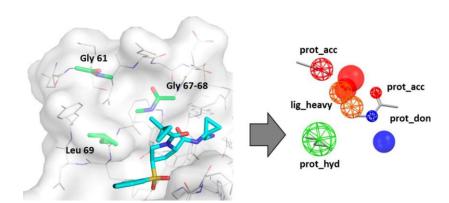
"A useful guide to recognize possible interaction geometries while designing ligands" (Journal of Computer-Aided Molecular Design, 14: 787–803, 2000)


Hit to Lead Back to Optimization

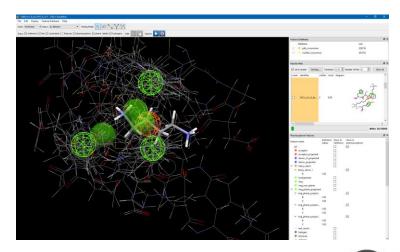

 Validate the complete geometry of a given query structure and identify any unusual features with Mogul.

- Optimize compound geometry by assessing how changes affect binding.
 - Selection of linking groups.
 - Ring-substituent geometry.
 - Intramolecular H-bonding.
 - Torsional barriers.

- Gain insights into the conformational and interaction preferences of pharmaceuticals and design molecules with desired shapes.
- Check the impact of changes with docking pose prediction.
- Find isosteric replacements or scaffold hops.



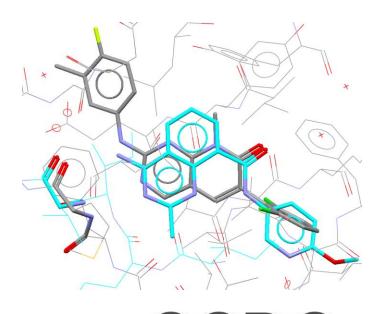
CSD-CrossMiner: Pharmacophore search



CSD-CrossMiner overview

- Pharmacophore-based searches of structural databases (CSD & PDB & any in-house databases, simultaneously).
- Modify a hypothesis/results on the fly: interactive tool.
- Annotated for easy filtering of hits.

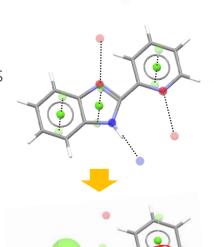


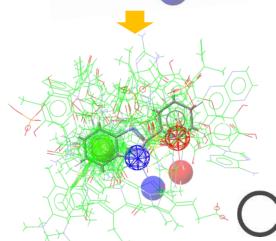


Interactive and versatile navigation of structural databases Korb O., et al. J. Med. Chem. (2016) **59**, 4257-4266.

CSD-CrossMiner applications

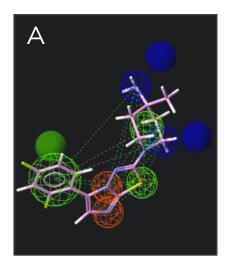
- Determine common protein binding sites in PDB structures.
- Determine structural motifs that bind in similar environments.
- Inform cross-pharmacology between protein targets.
- Generate new ideas:
 - Design novel motifs that mimic extablished ligands
 - → improve molecular properties; solve patent issues
 - Scaffold-hopping: retrieve a diversity of ligand topologies that can be used as scaffolds
 - → quickly advance a project with known ligands; optimise leads
 - Growing into other regions of a binding site
 - → improve selectivity; improve bioactivity; reduce cross-reactivity

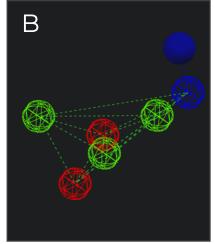


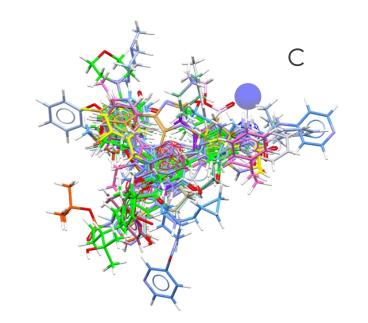


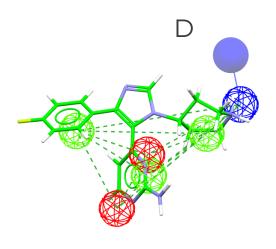
From features to pharmacophores

- Molecular structures are annotated with (customisable) features
 - Based on SMARTS patterns
 - Stored in feature database
- Pharmacophore query is based on tolerance spheres
 - Sphere radii reflect uncertainty in the position of the features
 - Large sphere → less strict
- Pharmacophore points can be
 - Single point
 - Directional (two points)
- Customisation of pharmacophore points
 - Molecule class: protein vs. small molecule vs. any
 - · Constraint: intramolecular vs. intermolecular vs. none



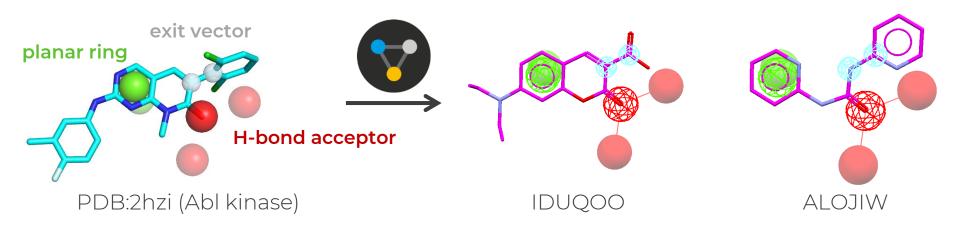

donor acceptor planar ring hydrophobe



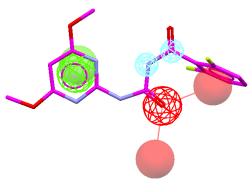

Ligand-Based Virtual Screening

CSD - CrossMiner Pharmacophore

- ✓ Heavy atoms features replaced by H-bond acceptors.
- ✓ Hydrophobic features volume reduced.
- ✓ Not essential H-bond donor feature removed.


Kinase inhibitor scaffold hop

PD166285 tyr-kinase inhibitor

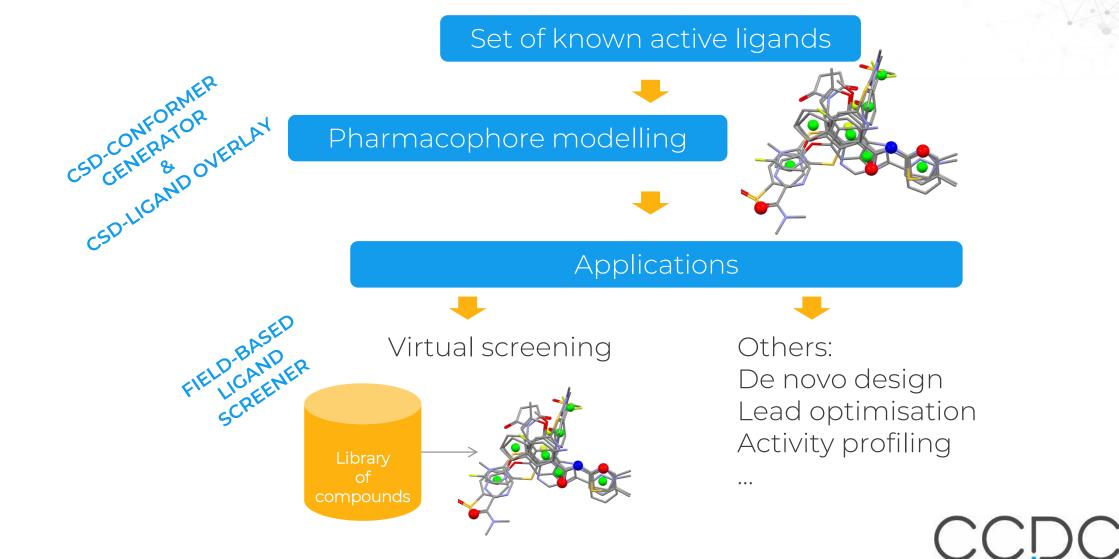

Prototype compound 1

IC₅₀ < 1 uM against different kinases

c-Src	0.066
EGF-R	0.38
c-Abl	0.25
FGFR-1	0.57
c-Kit	0.93
KDR	0.96
Tie-2	0.30
p38	0.35
EphB4	0.43

Entry into a new class of protein kinase inhibitors by pseudo ring design. Furet P., et al. Bioorg. Med. Chem. Lett. (2008) 18, 897-900 (Novartis)

IFAFEB



Ligand-Based Virtual Screening Workflow

Ligand-Based Virtual Screening Framework

CSD-Conformer Generator

- Part of CSD-Discovery, CSD-Materials and CSD-Enterprise suites
- The starting point are Mogul data libraries with some changes and improvements to tailor them to conformer generation
- 2022.1 release of Conformer Generator version: improved handling of flexible ring systems
 - Using Mogul templates for isolated, fused, spiro-linked and bridged rings
 - If no template available, then generated on the fly with cyclic bond rotamer distributions
- Fast & chemically plausible conformations
- Initial optimisation step also useful to prepare compound libraries before virtual screening

Workflow of conformer generation Minimize Lookup Mogul geometry distributions Generate conformer tree Select most likely paths through the tree Cluster conformers to select highest scoring representatives

- Programmatic access to the CSD software and extended functionalities
- Flexible, versatile and continuously evolving
- Integration with 3rd party software
- User-designed drug discovery workflows and jupyter notebooks
- Cloud infrastructures (AWS, Azure)
- Open source CSD GitHub repository: https://github.com/ccdc-opensource

- API documentation
 - IO API
 - Entry API
 - Crystal API
 - Molecule API
 - Search API
 - Conformer API
 - Protein API
 - Cavity API
 - Docking API
 - Pharmacophore API
 - Screening API
 - Particle API
 - Interaction API
 - Descriptors API
 - Morphology API
 - Diagram API
 - Utilities API
 - · CSD Landscape Generator
 - CSP Database API
 - · CSP Prediction API

Q&A

Thank you

